Finding the Magnetic Field from a Time-Varying Electric Potential. In Cylindrical coordinates.

$$\require{physics}$$ The Voltage at the Collector swings between 0V and 2Vcc $$ V_{c} = V_{cc} (1 + e^{ i \omega t} ) $$ The Electric Field is equal to negative the Gradient of the Voltage. $$ V = V_{c} $$ $$ \vb{E} = - \grad{ V } $$ $$ \vb{E} = - \pdv{V}{r} \vectorunit{r} - \frac{1}{r} \pdv{V}{\phi} \vectorunit{\phi} - \pdv{V}{z} \vectorunit{z} $$ $$ E_{r} = - \pdv{V}{r} \quad E_{\phi} = - \frac{1}{r} \pdv{V}{\phi} \quad E_{z} = - \pdv{V}{z} $$ $$ \vb{E} = E_{r}\vectorunit{r} + E_{\phi}\vectorunit{\phi} + E_{z}\vectorunit{z} $$ Let's find the Magnetic Field from the time-varying Electric Field. To do so, consider Maxwell's Equation for the Curl of the Electric Field. $$ \curl{ \vb{E} } = - \pdv{ \vb{B} }{t} $$ The Curl of E is defined as the Determinant of the following matrix: $$ \curl{ \vb{E} } = \frac{1}{r} \begin{vmatrix} \vectorunit{r} & r \vectorunit{\phi} & \vectorunit{z} \\ \pdv{}{r} & \pdv{}{\phi} & \pdv{}{z} \\ E_{r} & r E_{\phi} & E_{z} \\ \end{vmatrix} $$ $$ \frac{1}{r} \begin{vmatrix} \vectorunit{r} & r \vectorunit{\phi} & \vectorunit{z} \\ \pdv{}{r} & \pdv{}{\phi} & \pdv{}{z} \\ E_{r} & r E_{\phi} & E_{z} \\ \end{vmatrix} = \left( \frac{1}{r} \pdv{E_{z}}{\phi} - \pdv{E_{\phi}}{z} \right) \vectorunit{r} + \left( \pdv{E_{r}}{z} - \pdv{E_{z}}{r} \right) \vectorunit{\phi} + \frac{1}{r} \left( \pdv{ (r E_{\phi} ) }{r} - \pdv{E_{r}}{\phi} \right) \vectorunit{z} $$ Therefore, the Determinant of this matrix is equal to negative the partial derivative of the Magnetic Field, with respect to time. $$ \frac{1}{r} \begin{vmatrix} \vectorunit{r} & r \vectorunit{\phi} & \vectorunit{z} \\ \pdv{}{r} & \pdv{}{\phi} & \pdv{}{z} \\ E_{r} & r E_{\phi} & E_{z} \\ \end{vmatrix} = - \pdv{ \vb{B} }{t} $$ Let's integrate both sides of the equation with respect to time. $$ \int{ \frac{1}{r} \begin{vmatrix} \vectorunit{r} & r \vectorunit{\phi} & \vectorunit{z} \\ \pdv{}{r} & \pdv{}{\phi} & \pdv{}{z} \\ E_{r} & r E_{\phi} & E_{z} \\ \end{vmatrix} dt} = - \int{ \pdv{\vb{B}}{t} dt} $$ $$ \int{ \frac{1}{r} \begin{vmatrix} \vectorunit{r} & r \vectorunit{\phi} & \vectorunit{z} \\ \pdv{}{r} & \pdv{}{\phi} & \pdv{}{z} \\ E_{r} & r E_{\phi} & E_{z} \\ \end{vmatrix} dt} = - \vb{B} $$ $$ - \int{ \frac{1}{r} \begin{vmatrix} \vectorunit{r} & r \vectorunit{\phi} & \vectorunit{z} \\ \pdv{}{r} & \pdv{}{\phi} & \pdv{}{z} \\ E_{r} & r E_{\phi} & E_{z} \\ \end{vmatrix} dt} = \vb{B} $$ $$ - \int{ \left( \left( \frac{1}{r} \pdv{E_{z}}{\phi} - \pdv{E_{\phi}}{z} \right) \vectorunit{r} + \left( \pdv{E_{r}}{z} - \pdv{E_{z}}{r} \right) \vectorunit{\phi} + \frac{1}{r} \left( \pdv{ (r E_{\phi} ) }{r} - \pdv{E_{r}}{\phi} \right) \vectorunit{z} \right) dt} = \vb{B} $$ Now let's try an example. I wrote some Python code to help us. (coming soon...)