In Cylindrical Coordinates: Gradient, Divergence, Curl, Laplacian, Wave Equation, Bessel Functions

$$\require{physics}$$ Vector Field $$ \vb{E} = E_{r} \vectorunit{r} + E_{\phi} \vectorunit{\phi} + E_{z} \vectorunit{z} $$ 1. Gradient $$ \grad{V} = \pdv{V}{r} \vectorunit{r} + \frac{1}{r} \pdv{V}{\phi} \vectorunit{\phi} + \pdv{V}{z} \vectorunit{z} $$ 2. Divergence $$ \divergence{ \vb{E} } = \frac{1}{r} \pdv{ (r E_{r})}{r} + \frac{1}{r} \pdv{E_{\phi}}{\phi} + \pdv{E_{z}}{z} $$ 3. Curl $$ \curl{ \vb{E} } = \frac{1}{r} \begin{vmatrix} \vectorunit{r} & r \vectorunit{\phi} & \vectorunit{z} \\ \pdv{}{r} & \pdv{}{\phi} & \pdv{}{z} \\ E_{r} & r E_{\phi} & E_{z} \\ \end{vmatrix} $$ $$ \frac{1}{r} \begin{vmatrix} \vectorunit{r} & r \vectorunit{\phi} & \vectorunit{z} \\ \pdv{}{r} & \pdv{}{\phi} & \pdv{}{z} \\ E_{r} & r E_{\phi} & E_{z} \\ \end{vmatrix} = \left( \frac{1}{r} \pdv{E_{z}}{\phi} - \pdv{E_{\phi}}{z} \right) \vectorunit{r} + \left( \pdv{E_{r}}{z} - \pdv{E_{z}}{r} \right) \vectorunit{\phi} + \frac{1}{r} \left( \pdv{ (r E_{\phi} ) }{r} - \pdv{E_{r}}{\phi} \right) \vectorunit{z} $$ 4. Laplacian $$ \laplacian{ f } = \divergence{ \grad{ f }} $$ $$ \laplacian{ f } = \frac{1}{r} \pdv{ }{r} \left( r \pdv{f}{r} \right) + \frac{1}{r^2} \pdv[2]{f}{\phi} + \pdv[2]{f}{z} $$ Sometimes the Laplacian is written this way: $$ \laplacian{ f } = \pdv[2]{f}{r} + \frac{1}{r} \pdv{f}{r} + \frac{1}{r^2} \pdv[2]{f}{\phi} + \pdv[2]{f}{z} $$ 5. Wave Equation $$ \frac{1}{c^2} \pdv[2]{f}{t} = \laplacian{f} $$ $$ \frac{1}{c^2} \pdv[2]{f}{t} = \pdv[2]{f}{r} + \frac{1}{r} \pdv{f}{r} + \frac{1}{r^2} \pdv[2]{f}{\phi} + \pdv[2]{f}{z} $$ 6. Bessel Function. Bessel Functions of integer order are solutions to the Wave Equation in Cylindrical Coordinates. They are also, naturally, solutions to Bessel's Equation. Here are a couple different ways of writing Bessel's Equation: $$ x^{2} \frac{d^{2}}{d x^{2}} y{\left(x \right)} + x \frac{d}{d x} y{\left(x \right)} + \left( x^{2} - n^{2} \right) y{\left(x \right)} = 0 $$ $$ x^{2} \frac{d^{2} y}{d x^{2}} + x \frac{d y}{d x} + \left( x^{2} - n^{2} \right) y = 0 $$ $$ x^{2} y'' + x y' + \left( x^{2} - n^{2}\right) y = 0 $$ The solutions are combinations of Bessel Functions of the First and Second kind. $$ y{\left(x \right)} = C_{1} J_{n}\left(x\right) + C_{2} Y_{n}\left(x\right) $$ Bessel Function of the First Kind: $$ J_n(x)=\frac{1}{\pi}\int_0^\pi\cos(x\sin \theta-n\theta)\mathrm{d}\theta $$ Another way of defining the Bessel Function of the first kind, where n is an integer: $$ J_n(x) = \sum_{k=0}^{\infty} \frac{ (-1)^{k} }{ k! \; (n+k)! }\left( \frac{x}{2} \right)^{n+2k} $$ Examples and Python code coming soon...

References:

  1. Foadi, James. "Laplace's Equation in Cylindrical Coordinates and Bessel's Equation" Oxford, 2011.
  2. Sudo Null Company. Bessel Functions in Sympy Symbolic Math Program 18 March, 2019.
  3. Wikipedia. Del in Cylindrical and Spherical Coordinates
  4. Torre, Charles G., "12 Cylindrical Coordinates" (2014). Foundations of Wave Phenomena. 11. https://digitalcommons.usu.edu/foundation_wave/11
  5. Nan, CHU. "SymFields: An Open Source Symbolic Fields Analysis Tool for General Curvilinear Coordinates in Python" Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China. December 22, 2020. https://arxiv.org/pdf/2012.10723.pdf Symfields library available here: https://github.com/DocNan/SymFields
  6. Bessel Functions of the First and Second Kind. http://www.mhtlab.uwaterloo.ca/courses/me755/web_chap4.pdf
  7. Abbasi, Nasser M. "My Sympy and Python Cheat Sheet". https://12000.org/my_notes/faq/sympy_python/index.htm 13 June 2021.